15 research outputs found

    Generalized Synchronization in Ginzburg-Landau Equations with Local Coupling

    Full text link
    The establishment of generalized chaotic synchronization in Ginzburg-Landau equations unidirectionally coupled at discrete points of space (local coupling) has been studied. It is shown that generalized syn-chronization regimes are also established with this type of coupling, but the necessary intensity of coupling issignificantly higher than that in the case of a spatially homogeneous couplingComment: 4 pages, 2 figure

    Generalized Chaotic Synchronizationin Coupled Ginzburg-Landau Equations

    Full text link
    Generalized synchronization is analyzed in unidirectionally coupled oscillatory systems exhibiting spatiotemporal chaotic behavior described by Ginzburg-Landau equations. Several types of coupling betweenthe systems are analyzed. The largest spatial Lyapunov exponent is proposed as a new characteristic of the state of a distributed system, and its calculation is described for a distributed oscillatory system. Partial generalized synchronization is introduced as a new type of chaotic synchronization in spatially nonuniform distributed systems. The physical mechanisms responsible for the onset of generalized chaotic synchronization in spatially distributed oscillatory systems are elucidated. It is shown that the onset of generalized chaotic synchronization is described by a modified Ginzburg-Landau equation with additional dissipation irrespective of the type of coupling. The effect of noise on the onset of a generalized synchronization regime in coupled distributed systems is analyzed.Comment: 12 page

    Experimental and Theoretical Investigation into the Effect of the Electron Velocity Distribution on Chaotic Oscillations in an Electron Beam under Virtual Cathode Formation Conditions

    Full text link
    The effect of the electron transverse and longitudinal velocity spread at the entrance to the interaction space on wide-band chaotic oscillations in intense multiple-velocity beams is studied theoretically and numerically under the conditions of formation of a virtual cathode. It is found that an increase in the electron velocity spread causes chaotization of virtual cathode oscillations. An insight into physical processes taking place in a virtual cathode multiple velocity beam is gained by numerical simulation. The chaotization of the oscillations is shown to be associated with additional electron structures, which were separated out by constructing charged particle distribution functions.Comment: 9 pages, 8 figure

    Investigation of the Chaotic Dynamics of an Electron Beam with a Virtual Cathode in an External Magnetic Field

    Get PDF
    The effect of the strength of the focusing magnetic field on chaotic dynamic processes occurring inan electron beam with a virtual cathode, as well as on the processes whereby the structures form in the beamand interact with each other, is studied by means of two-dimensional numerical simulations based on solving a self-consistent set of Vlasov-Maxwell equations. It is shown that, as the focusing magnetic field is decreased,the dynamics of an electron beam with a virtual cathode becomes more complicated due to the formation andinteraction of spatio-temporal longitudinal and transverse structures in the interaction region of a vircator. The optimum efficiency of the interaction of an electron beam with the electromagnetic field of the vircator isachieved at a comparatively weak external magnetic field and is determined by the fundamentally two-dimensional nature of the motion of the beam electrons near the virtual cathode.Comment: 12 pages, 8 figure

    Mechanisms Behind the Generalized Synchronization Conditions

    Full text link
    A universal mechanism underlying generalized synchronization conditions in unidirectionally coupled stochastic oscillators is considered. The consideration is carried out in the framework of a modified system with additional dissipation. The approach developed is illustrated with model examples. The conclusion is reached that two types of the behavior of nonlinear dynamic systems known as generalized synchronization and noise-induced synchronization, which are viewed as different phenomena, actually represent a unique type of the synchronous behavior of stochastic oscillators and are caused by the same mechanism.Comment: 8 pages, 5 figure
    corecore